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the asymmetry and then the width of the rocking 
curve by a simple rotation of the sample; (ii) the use 
of very inclined reflecting planes in a tilted and 
symmetric geometry enables a decrease in the ther- 
mal load on monochromators, since the trace of the 
incident beam on the surface of the crystal is then 
much larger than in the case of symmetric reflections 
on the surface (Macrander et al., 1992). 

The experiments were performed on beam line 
D15B of the DCI storage ring at LURE, Orsay, 
France. We thank very much Professor J. Derrien of 
the CRMC2, Marseille, France, for the preparation 
of the sample. This work was financially supported 
by the French Ministry of Research and the EEC 
(Esprit BRA no. 3026). 
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Abstract 

Traditional direct methods based on the tangent 
formula and/or on Sayre's equation cannot solve ab 
initio the large majority of protein crystal structures 
[Giacovazzo, Guagliardi, Ravelli & Siliqi (1994). Z. 
Kristallogr. 209, 136-142]. Indeed, the amount of 
information available leads to a signal-to-noise ratio 
close to unity; consequently, the correct solution, 
even if attained, cannot be recognized among the 
trial solutions. Attention is here focused onto the 
case in which diffraction data of one isomorphous 
derivative are additionally available. It is shown that 
in such a case direct ab initio solution of protein 
structures is feasible. Tests based on calculated dif- 
fraction data suggest the procedure to follow for a 
possible success. 
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Fp = Fp[ exp (i~o) 
Fa = F,~ exp (i~b) 

F,,= Y~-Yp 

Notation 

i Structure factor of the protein 
Structure factor of the isomor- 
phous derivative 
Structure factor of the heavy- 
atom structure (added to the 
native protein) 

@= ~0h- ~Ok- ~Oh--k 
Ep = R exp (i~o) Normalized structure factor for 

the protein 
Ea=Sexp(id/)  Normalized structure factor for 

the isomorphous derivative 
N Number of non-H atoms in the 

N primitive cell 
0-; = Y. Z~ (Zj is the atomic number of the jth 

j---- I atom) 
Neq = 0"32/0"2 Statistically equivalent number of 

atoms in the primitive unit cell 
[0"310"2]p Value of Neq for the native 

protein 
[0"32/0"2]~ Value of Neq relative to the heavy- 

atom structure 
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G= 2]RhRkR..-kl[ O~3 / o-23/2]p 
f: Atomic scattering factor of the jth 

atom 
~'.H--'~Hf 2 (The sum is extended to the 

heavy-atom structure) 
D~(x) = L(x)/Io(x) (L is the modified Bessel function 

of order i) 

I n t r o d u c t i o n  

Are traditional direct methods able to solve protein 
structures ab initio? Reasons for failure are today 
well documented: (a) the weak correlation between 
the reliability parameter G and the value of q~ [i.e. 
fiat distributions P(q~G)]; (b) the low resolution of 
the experimental data, which hardly extend at atomic 
resolution; (c) the enormous number of local maxima 
for the tangent formula, which are bereft of struc- 
tural meaning. However some a posteriori trials 
(Woolfson & Yao, 1990; Sheldrick, Danter, Wilson, 
Hope & Sieker, 1993) on previously solved small 
proteins succeeded in two cases (the 0.98 ,~ data for 
APP, a 36-residue hormone crystallizing in C2, and 
rubredoxin from Desulfovibrio vulgar&, also diffrac- 
ting at atomic resolution) and excited new interest in 
future developments. 

The question of the successful application of tradi- 
tional direct methods to proteins may be answered 
provided two basic problems are solved. (1) Can 
some criteria be fixed for predicting or excluding a 
priori the success of direct methods when applied to 
a given set of diffraction data? (2) Under which 
conditions can the 'correct solutions' be picked up 
among numerous trials in a multisolution approach? 
An answer to both these questions has recently been 
given by Giacovazzo, Guagliardi, Ravelli & Siliqi 
(1994). Their main conclusions are: 

(a) In the absence of any phase information, the 
parameter 

Zh=(ah}/O',~. (1) 

may be considered to be a 'signal-to-noise ratio', ah 
is the well known reliability parameter connected 
with the tangent formula (Karle & Hauptman, 1956). 

tan O h ~-- G j  sin ( ~ k  1 "~" (~h -- COS (~k: + (~h - 0 
j = l  " =  

= T h / B h .  ( 2 )  

Oh is the most probable value of q~h and 

ah=(T2+B~) '/2. (3) 

(b) Since ah is normally distributed (Cascarano, 
Giacovazzo, Bur]a, Nunzi & Polidori, 1984) about 

r 

{ah) = E GjDI(Gj), (4) 
j = l  

with variance given by 

~r~, = ½ Z G)[1 + D2(Gj) - 2D~(Gj)], 
j = l  

traditional direct methods can successfully be applied 
to a given set of data if, for a sufficiently high 
percentage of large normalized structure factors, 

z>_T, 

T is a threshold that, as a rule of thumb, can be 
reasonably fixed to about 3. 

Criterion (b) (from now on referred to as the 
statistical solvability criterion) can easily be applied 
to proteins, where the Gfs are very small. In this 
case, 

D , ( G j ) = G j / 2 ,  {ah) = Z G2/2- - - -o  "2 
j = l  

and Zh={ah) '/2. 
Roughly speaking, the solvability criterion 

requires (O~h) to be larger than 9 for a large per- 
centage of strong reflections. This situation may only 
occur for high-resolution data and/or for small 
proteins. 

We show in Fig. 1 the distribution of the z values 
[i.e. the P(z) curves] calculated from the experi- 
mental data for the proteins quoted in Table 1. For 
useful comparison, the P(z) distribution of a small- 
molecule structure (WINTER) is also drawn. Details 
of the protocol used for calculating the curves in Fig. 
1 are given in Table 2. 

Fig. 1 confirms the pessimistic conclusions on the 
role of traditional direct methods drawn by 
Giacovazzo, Guagliardi, Ravelli & Siliqi (1994). 
Both experimental limits (i.e. the resolution of 
experimental data) and structure complexity make 
most of the proteins absolutely unsolvable ab initio 
by traditional direct methods. Only very small 
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Fig. 1. The  d i s t r ibu t ion  o f  the z values  ca lcu la ted  f r o m  experi-  
men ta l  d a t a  fo r  the test s t ructures .  T h e  C o c h r a n  p a r a m e t e r  is 
used in the z express ion.  



C A R M E L O  GIACOVAZZO,  D R I T A N  SILIQI A N D  A D A M  RALPH 505 

Table 1. Code name, space group and crystallo- 
chemical data for test structures 

Structure Space Molecular 
code Reference group formula Z 

APP (l) C2 C IgoN53058Zn 4 
CARP (2) C2 Cst3NI3jCa2Oj21S 4 
E2 (3) F432 Cj,70N3j00366S7 96 
M-FABP (4) P2~2~2~ C667NI70026153 4 
WINTER (5) P2~ C52Hs3Nt ~O~6.3CH2C12 2 

References: (1) Glover, Haneef, Pitts, Wood,  Moss, Tickle & 
Blundell (1983); (2) Kretsinger & Nockolds (1973); (3) Mattevi, 
Obmolova, Schulze, Kalk, Westphal, De Kok & Hol (1992); (4) 
Zanotti, Scapin, Spadon, Veerkamp & Sacchettini (1992); (5) 
Butters, Hfitter, Jung, Pauls, Schmitt, Sheldrick & Winter (1981). 

Table 2. Protocol used for calculat&g the curves in 
Fig. 2 

RES [ = M(2 sin 0ma~)] is the resolution of  diffraction data for the 
native protein, N R E F L  is the number of  measured symmetry- 
independent reflections, N L A R  is the number of  largest 
normalized structure factors, NTRIP  is the number of  triplets 
found among the N L A R  reflections. For  the test proteins, N L A R  
is chosen so as to give rise to approximately 30000 triplet rela- 
tionships. It is supposed the N L A R  reflections are uniformly 
distributed in the resolution ranges: no care is taken about  their 
centric or non-centric nature. 

Structure code RES (A) N R E F L  N L A R  N T R I P  

APP 0.99 17058 1250 30000 
CARP 1.70 5056 800 28260 
E2 3.00 10388 600 30000 
M-FABP 2.14 7804 800 30000 
WINTER 0.84 6509 475 5948 

proteins (like APP) could in favourable conditions be 
directly phased. A countercheck for these conclu- 
sions is Table 3, where statistical calculations on 
triplet invariants are made. In the table, Nr is the 
number of triplets having G larger than ARG, % is 
the percentage of the positive cosine triplets and (] q~) 
is the average of the absolute values of @. While 
triplets for APP show a favourable (for a possible 
successful direct phasing) behaviour, their distribu- 
tions for CARP, E2 and M-FABP are close to 
random. 

The statistical solvability criterion is of high rele- 
vance when first principles must be fixed. For 
example, the dogmatic principle 'direct methods do 
not work when atomic resolution is not attained' is 
not supported by our criterion, which solves the 
problem on a practical basis; when only low- 
resolution data are available, the signal-to-noise ratio 
is too small for proteins. However, small-molecule 
structures can in principle be solved even at non- 
atomic resolution and, in addition, proteins could in 
principle be solved ab initio via low-resolution data 
provided some supplementary information allowing 
more accurate estimates (i.e. higher [G] values) for 
triplet invariants is available. 

Table 3. Statistical calculations for triplet &variants 
(native prote&s) estimated by the Cochran formula 

APP CARP 
A R G  Nr % (1~1) A R G  Nr % (l~l) 

0.0 30000 70.7 65.811 0.0 28260 56.8 82.352 
0.2 30000 70.7 65.811 0.2 I 1497 58.9 80.436 
0.4 30000 70.7 65.811 0.4 269 65.4 73.178 
0.8 10275 73.2 62.705 0.8 0 
1.2 1025 77.7 57.678 1.2 0 
2.0 18 83.3 53.056 2.0 0 

E2 M-FABP 
A R G  Nr % (1~1) A R G  Nr % (1~1) 

0.0 30000 52.4 87.502 0.0 30000 54.6 84.764 
0.2 233 53.6 85.021 0.2 15751 55.5 83.616 
0.4 0 0.4 569 56.9 80.657 
0.8 0 0.8 0 
1.2 0 1.2 0 
2.0 0 2.0 0 

A new question now arises: can direct methods 
solve protein structures if some additional prior 
information is available? Several examples can be 
found in the literature where direct methods are 
successfully used for phase expansion (i.e. from a 
subset of a priori determined phases to a larger set of  
phases) or for phase refinement. Since we are inter- 
ested in the ab initio solution,, typical additional 
information to consider may be that contained in 
one or more isomorphous data sets or in measure- 
ments of the anomalous-dispersion effect. We here 
focus our attention on the first case. Accordingly, the 
question may be restated: are direct methods able to 
solve protein structures ab initio when diffraction 
data from an isomorphous derivative are available? 
Can some criteria be fixed that predict or exclude 
success in these new conditions? 

If, besides protein intensity data, one set of 
isomorphous data is also available, a mathematical 
technique can be used (Hauptman, 1982) that 
integrates direct-methods and isomorphous- 
replacement techniques. The triplet phase invariants 
of the protein may then be estimated via the fol- 
lowing probabilistic formula: 

P(q~R1,R2,R3,SI,S2,S3)=[2ZrIo(A)]-I exp (A cos @), 

(5) 

where A is a positive or negative term, the value of 
which depends on an intricate interrelationship 
among the six moduli RI, R2, R3, S1, $2 and $3. 
Hauptman's  approach has been reconsidered and 
generalized by Giacovazzo, Cascarano & Zheng 
(1988). When the isomorphous derivative is obtained 
by addition of some heavy atoms, a simplified 
expression for A comes out: 

A = 2[o-3/O'z3/2]pRIRER3 + (23.)(1F..I- IFp.I) 

x (Iraqi- Irp~l)(lrd3[- [rp, I), (6) 



506 AB INITIO PROTEIN S T R U C T U R E  SOLUTION BY DIRECT METHODS.  I 

w h e r e  2[o'31o'23/2]pR1R2R3 is the classical Cochran 
(1955) concentration parameter relative to the pro- 
tein structure and 

x I [ z :  k)ll 
I.LH JLH JLH J J  

The summations in F.3H are extended over the heavy 
atoms to the native protein. In terms of normalized 
and pseudonormalized structure factors, (6) may be 
written as 

A = 2[o'3/o'ffZ]pR1R2R3 + 2[o'3/O.23'2]HA~A2A3, (7) 

where A = ([Fal-lFp)/(Y~H) l/z is a pseudonormalized 
difference (with respect to the heavy-atom structure). 
Since [O.31O.2312]H>:>[o'31o'23/2]p , the Cochran par- 
ameter is often negligible with respect to the term 
including the pseudonormalized differences, and this 
last may attain large values even for large protein 
structures. Since the product A1d2a 3 may be positive 
or negative, positive as well as negative triplets can 
be identified via (5). In the phasing process, a 
modified tangent formula can then be applied, 
according to which the most probable value of ~0h is 
given by 

r 

tan Oh = Z Aj sin (~Ok, + ~0h - k) / ~ Aj COS (~okj + ~0h - k) 
j = l  ' j = l  

= T'h/ah. (8) 

The reliability parameter is now 

ah = (T~ 2 + B~,2) ~/2, (9) 

which is expected to be larger than the value pro- 
vided by (3). Accordingly, 

(ah} = Z IAjD,(A:)I 
j=l 

and 

o-~ h = ½ Z A][1 + D2(Aj)- 2D~(Aj)]. 
j= l  

In these conditions, the parameter Zh = (ah)/O',~h may 
again be considered as a signal-to noise ratio. If the 
distribution P(z) satisfies the criterion (b), that would 
suggest a possible success for a direct phasing pro- 
cedure. We check this point in the next section of this 
paper. First, we show that a sounder parameter A 
can be found. 

A general probabilistic formula 

The concentration parameter A of the distribution 
(5) was derived by Giacovazzo, Cascarano & Zheng 

Table 4. Parameters defin&g protocol for calculations 

RES [ = A/(2 sin 0max)] is the resolution of  the derivative diffraction 
data, Deriv. denotes the atomic species added to the protein, 
N R E F L  is the number of  measured symmetry-independent reflec- 
tions, N L A R  is the number of  largest normalized structure factors 
and N T R I P  is the number of  triplets found among the N L A R  
reflections. N L A R  is chosen so as to give rise to approximately 
30000 triplet relationships. [tr2]n/[tr2]p is the ratio between the 
scattering power of  the heavy atoms added to the protein and the 
scattering power of  the protein. 

Structure 
code Deriv. [O'2]n/[Or2] p RES N R E F L  N L A R  NTRIP  

APP Hg 0.4555 2.0 2086 600 31807 
CARP Hg 0.0877 2.0 4687 800 30026 
E2 Hg 0.0770 3.0 9179 450 35702 
M-FABP Hg 0.0642 3.0 3069 600 33110 

(1988) (see that paper for the notation) as 

A = 2floRIRzR3 + 2flllSiR2R3T1 

+ 2fll2R1SzR3T2 + 2f113RIR2S3T3 

+ 2f123SIS2R3T17"2 + 2f122SIRzS3TI T3 

+ 2flzIRIS2S3T2T3 + 2~3SIS2S3T1T2T3, 

where 

(10) 

T i = D l(2f loiRiSi) .  

Expressions (6) and (7) were obtained from (10) for 
the case of a native-protein heavy-atom derivative 
and on the assumption that 

T~=I  for i =  l,2,3. 

This last assumption is strictly valid if the scattering 
power of the heavy atoms added to the native pro- 
tein is negligible compared with the protein scat- 
tering power. In the most general case, (6) and (7) 
should be replaced by 

A = 2[o.3/O.23/z],,R,R2R3 + 2(Z3H)(lFa, l T , -  [Fp, I) 

× (lid Jr2-- [rpJ)(lrd3lV3 - Irp,[) 
""2[o's/O.23/2]RRIR2R3 + 2[0"3/- 3/21 A, A,,~, / 0 2  J H/-I 1/-,12 " ~3, 

(11) 

where 

a' = (IF IT-[F 0/Z;, '2. 

In (11), IFdl is multiplied by T before the calculation 
of the pseudonormalized difference. Accordingly, A' 
and A may have opposite sign and thus their use can 
give rise to different estimates. Even if the use of A' 
is theoretically more advisable than the use of A, for 
the cases of practical interest (i.e. for typical protein 
derivatives and for R and S larger than or close to 
unity), Tl is sufficiently close to 1. Therefore, no 
remarkable differences in the accuracy of the results 
have been found whether T is used or not. 
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Preliminary tests 

The robustness of a phasing method has always to be 
checked with experimental data. Indeed, a mathe- 
matical theory, even if correct, fails if it exacts an 
accuracy level for the experimental data that is not 
attainable in practice. This is the key to the success 
of traditional direct methods when applied to small 
molecules. When the classical tangent formula (2) is 
used, the reliability parameter G depends on the 
product of three R magnitudes alone: in this case, 
even experimental errors up to 15-20% in R would 
not change the general effectiveness of the formula. 
As a practical counterpart, small-molecule structures 
are easily solved by traditional direct methods even if 
remarkable errors in the diffraction measurements or 
in their treatment have been made. 

When native and isomorphous data are simultane- 
ously available and (5) has to be used, then the A' (or 
A) magnitudes must be considered together with the 
factor [tr3/O'213H/2. This last term is not known a priori 

o ~6 ] . . . . .  APP 

o.t4 i . . . .  CARP : , : . . . .  E2 
o 12 . . . . . . .  M-FABP 

0 1 0  

P(z) 008 

006 

o 02 // 
0 0 0  J : : = :  w 

0 1 2 3 4 5 6 7 8 9 1 0  " - I r l  - " - l r2  

Z 

Fig. 2. The distribution of  the z values (from error-free calculated 
data) for the test structures when A [as defined by (11)] is used 
in the z expression. 
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Fig. 3. Distributions o f  the IAI values (from error-free calculated 
data) for the N L A R  reflections defined in Table 4. 

Table 5. Stat&tical calculations for  triplet &variants 
estimated via (11) 

Calculated da ta  for native and derivative structures are used. Nr  is 
the number  of  triplets having IAI>  IARGI, % is the percentage 
of  triplets whose cosine sign is correctly estimated and (I ~ )  is the 
average of  the absolute values of  the triplet phase qo. 

APP 

IARGI 

0.0 
0.2 
0.4 
0.8 
1.2 
1.6 
2.0 
2.6 
3.2 
3.8 

C A R P  

IARGI 

0.0 
0.2 
0.4 
0.8 
1.2 
1.6 
2.0 
2.6 

E2 

IARGI 

0.0 
0.2 
0.4 
0.8 
1.2 
1.6 
2.0 
2.6 
3.2 

M-FABP 

IARGI 
0.0 
0.2 
0.4 
0.8 
1.2 
1.6 
2.0 
2.6 
3.2 

Positive estimated triplets Negative estimated triplets 
Nr % (I 4)1) Nr  % (I ~1) 

29183 62.5 75.731 2624 77.4 120.760 
23937 64.9 73.029 1556 83.7 127.853 
10745 73.0 63.307 941 88.4 133.233 
2718 87.3 46.170 369 95.9 141.724 
1113 92.9 39.438 142 99.3 150.000 
491 96.5 34.756 53 100.0 155.245 
193 97.9 29.617 14 100.0 161.357 
57 98.2 18.860 1 100.0 180.000 
15 100.0 7.933 0 
3 100.0 .000 0 

Positive estimated triplets Negative estimated triplets 
Nr % (14)1) Nr  % (14~1) 

28105 61.2 77.191 1921 77.7 122.285 
16892 65.6 72.180 860 87.9 132.295 
4687 79.5 56.483 430 94.4 139.981 

901 91.5 42.121 94 100.0 151.500 
214 94.4 40.131 12 100.0 168.833 
44 88.6 38.250 1 100.0 180.000 
11 81.8 41.545 0 
2 50.0 93.000 0 

Positive estimated triplets Negative estimated triplets 
Nr  % (I ~1) Nr  % (I ~i) 

31207 53.9 85.31o 4495 56.0 96.836 
4795 62.5 76.124 1186 61.5 103.896 
1269 70.1 67.381 466 67.2 110.354 
256 82.0 50.762 112 72.3 118.884 

62 87.1 43.887 40 77.5 122.675 
20 95.0 35.600 13 84.6 126.615 
12 91.7 36.000 4 1oo.o 139.500 
3 10o.0 35.000 1 100.0 170.000 
1 100.0 34.000 1 1oo.o 170.000 

Positive estimated triplets Negative estimated triplets 
Nr % (1~i) Nr % (I q~',) 

28577 57.1 81.839 4533 70.3 133.887 
8924 67.7 69.133 1407 86.2 131.866 
2485 84.0 50.311 644 92.1 138.258 

530 97.4 34.358 177 98.9 146.486 
176 99.4 29.568 50 100.0 152.920 
46 100.0 21.652 14 100.0 165.071 
20 100.0 16.250 7 100.0 171.429 

3 100.0 9.667 0 
1 100.0 .000 0 

and may only be estimated. Furthermore, the terms 
A' are very sensitive to two things: (a) experimental 
errors in the measured data (even small errors in R 
and S can change the sign of A'); (b) imperfect 
treatment of the data. For example, let us suppose 
that R and S are obtained via a Wilson plot followed 
by a normalization process. Errors in the absolute 
scale and in the thermal factors for protein and 
derivative data can again modify the sign and value 
of A'; (c) lack of isomorphism between native and 
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derivative structures owing to rotation or translation 
of some structural regions. 

Further difficulties for a successful phasing process 
are generated by the fact that resolution of the 
derivative data is lower than that of the native 
protein. This can limit the number of triplets reliably 
estimated by (5). Since the term .A may simultane- 
ously be affected by different sources of errors, we 
prefer in a first step to check the goodness of the 
approach in ideal conditions, that is by using calcu- 
lated (error-free) data. The analysis of the results will 
allow us to identify the most critical points of the 
method and derive useful suggestions for a second 
paper, where experimental data will be used and the 
full phasing procedure will be described. Here, calcu- 
lated data up to the experimental derivative resolu- 
tion are used. 

The protocol for the calculations is defined by the 
parameters shown in Table 4. The statistical solva- 
bility criterion should hold also in the case in which 
isomorphous data are additionally available. There- 
fore, in order to judge the possible success of (8) and 
(9), we calculate again the P(z) curves (see Fig. 2). A 
comparison with Fig. 1 suggests that: 

(a) the z value of a relatively high percentage of 
reflections for CARP, E2 and M-FABP is below 2 in 
both Fig. 1 and Fig. 2; 

(b) the only remarkable improvement generated 
by the additional use of derivative data is the longer 
right tail of the curves in Fig. 2. 

Our conclusion is that the additional use of deriva- 
tive data improves the z values for only a limited 
percentage of the NLAR reflections, while the major- 
ity of them obtain marginal benefit. This statement is 
supported by Table 5 where a statistical check on the 
triplet reliability is made. Comparison of Table 5 
with Table 3 shows that triplet reliability is markedly 
improved when (5) is used: reliably estimated posi- 
tive and negative triplets are now available even for 
CARP, E2 and M-FABP. The statistical behaviour 
of (J~) is similar to that shown by small-molecule 
structures but for an important detail: too large a 
percentage of triplets with small [A[ values. For 
example, for APP [A[ <0.2 for 6314 triplets; the 
corresponding values for CARP, E2 and M-FABP 
are 12274, 29721 and 22779, respectively. This 
anomalous triplet distribution is responsible for the 
relatively high percentage of reflections with z < 2 for 
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Fig. 4. Distributions of the z values (from error-free calculated data) relative to suitable sets of NLAR reflections defined by various 
SOG values: (a) APP; (b) CARP; (c) E2; (d) M-FABP. 
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Table 6. Statistical calculations for triplet invariants estimated via (11)for various values of SOG m 0 

Positive estimated triplets 

Calculated data for native and derivative structures are used. 

Negative estimated triplets Positive estimated triplets Negative estimated triplets 
A P P  (SOG = 0.3) E2 (SOG = 0.6) 

IARGI Nr  % (I qOl) Nr  % (I ~1) IARGI N r  % (I ~1) Nr  % 

0.0 19703 73.6 62.749 11404 73.4 116.667 0.0 16027 64.8 73.048 15531 62.0 
0.2 17179 76.8 58.885 6984 81.0 125.219 0.2 15536 65.1  72.605 11293 65.1 
0.4 13872 80.9 54.145 3977 86.3 131.339 0.4 9082 69.5 67.370 5268 71.1 
0.8 5823 89.4 43.805 1362 94.5 140.361 0.8 2027 79 .8  54.358 1174 82.5 
1.2 2313 94.3 37.980 445 98.7 149.889 1.2 506 87.4 45.103 339 89.4 
1.6 906 97.8 31.681 155 100.0 157.219 1.6 158 90.5 41.101 114 94.7 
2.0 341 99 .1  25.660 42 100.0 166.048 2.0 62 90.3 37.161 35 91.4 
2.6 84 100.0 16.357 2 100.0 179.500 2.6 12 100.0 28.750 11 90.9 
3.2 21 100.0 8.952 0 3.2 4 100.0 16.500 6 100.0 
3.8 3 100.0 .000 0 3.8 2 100.0 12.000 2 100.0 

4.4 ! 100.0 1.000 0 
APP  (SOG = 0.5) 

IARGI Nr  % (1~1) Nr  % (I~P[) E2 (SOG = 1.2) 

0.0 19006 85.6 48.918 15463 82.5 127 .297  IARGI Nr  % (I q01) N r  % 
0.2 18920 85.7 48.724 14571 83.8 128.868 0.0 17647 86.2 47.580 17123 85.2 
0.4 18391 86.2 48.124 11127 86.5 132.378 0.2 17647 86.2 47.580 17123 85.2 
0.8 10887 90.4 43.222 4196 92.8 139.692 0.4 17647 86.2 47.580 17123 85.2 
1.2 4311 94.9 37.575 1236 97.9 147.482 0.8 17595 86.2 47.542 16880 85.4 
1.6 1487 98.2 31.319 329 100.0 154.489 1.2 12084 88 .9  44.261 10671 88.8 
2.0 459 99.3 25.765 74 100.0 164.946 1.6 5396 91.7 39.951 4654 92.2 
2.6 96 I00.0 16.323 3 100.0 179.667 2.0 2143 93.0 36.874 1849 93.6 
3.2 2t i00.0 8.952 0 2.6 617 95.0 32.968 567 97.7 
3.8 3 I00.0 .000 0 3.2 209 98.1  26.646 198 96.0 

3.8 89 96.6 25.360 80 96.2 
CARP (SOG30.3)  4.4 28 96.4 16.607 33 100.0 

(t~l) 
104.210 
107.659 
115.061 
126.718 
135.973 
142.316 
140.143 
155.000 
172.883 
180.000 

(l~l) 
131.182 
131.182 
131.182 
131.371 
135.639 
140.573 
143.607 
150.026 
151.172 
152.137 
160.061 

IARGI Nr % (I ~Pl) Nr  % (I CPl) 
M - F A B P  (SOG = 0.3) 0.0 16919 81 .1  54.649 12281 78.4 122.973 

0.2 15825 83 .3  52.313 8002 85.2 130.771 IARGI Nr  % 
0.4 12405 87.5 47.149 4225 91.2 136.871 0.0 17408 72.9 
0.8 4056 95.9 37.613 1007 99.7 148.695 0.2 i 4669 76.6 
1.2 867 99.5 30.278 139 100.0 159.338 0.4 7038 87.4 
1.6 103 100.0 19.417 6 I00.0 173.000 0.8 1651 96.4 
2.0 7 ! 00.0 11.000 0 1.2 526 99.2 
2.6 0 0 1.6 169 99.4 

2.0 67 100.0 
CARP (SOG = 0.6) 2.6 12 100.0 

IARG[ Nr % (Iqbl) Nr  % (I t/~) 3.2 1 100.0 

0.0 20419 96.4 35.004 17574 95.9 144.161 
0.2 20419 96.4 35.004 17564 95.9 144.166 
0.4 20418 96.4 34.999 17471 95.9 144.233 
0.8 17078 97.5 33.119 10023 98.8 148.645 
1.2 4751 100.0 27.265 1718 100.0 157.194 
1.6 491 100.0 17.094 130 100.0 166.246 
2.0 7 100.0 10.286 0 
2.6 0 0 

(I CPl) Nr % (1¢1) 

63.667 13987 72.1 115.612 
59.318 6414 85.5 130.980 
46.786 2891 91.7 138.582 
34.681 806 96.9 145.949 
29.717 258 99.6 152.519 
23.959 105 100.0 157.486 
19.269 44 100.0 164.909 
11.750 9 100.0 170.000 

.000 3 100.0 171.667 

M - F A B P  (SOG = 0.5) 

IARGI N r  % (I ~Pl) Nr  % (I ~1) 

0.0 16854 88.6 45.423 15978 87.0 133.076 
0.2 16852 88.6 45.419 15554 87.6 133.730 
0.4 15091 90.5 43.199 11635 91.7 138.618 
0.8 6006 95.9 35.499 4056 96.5 145.359 
1.2 2050 98.7 30.927 1332 99.2 150.208 
1.6 707 99.6 26.320 523 100.0 155.589 
2.0 258 100.0 22.705 188 100.0 159.048 
2.6 58 100.0 18.034 36 100.0 163.889 
3.2 10 I00.0 6.300 9 100.0 174.333 

CARP, E2 and M-FABP, and therefore for a prob- 
ably difficult phase expansion in a direct-phasing 
process. The primary source of this undesired effect 
is an intrinsic property of the distribution of the IA'I 
values. In Fig. 3, for each structure, the experimental 
distributions of the IA'l values for the NLAR reflec- 
tions defined in Table 4 are given. The curves suggest 
that the most probable value of IA'I is close to zero: 
therefore, too small IA'I values should be associated 
with a relatively high percentage of the NLAR 
reflections. When ]Ah] is small, the reflection h is 
likely to be characterized by a small value of ah; 
consequently, Zh will also be small and the estimate 

of ~0h will be unreliable. We reacted to this unfavour- 
able situation by changing the nature of the NLAR 
reflections (but leaving unmodified the value of 
NLAR): we included in the set the reflections with 
the largest R values provided I '1 > SOG, where 
SOG is a suitable threshold. The condition I,a'l > 
SOG selects the reflections whose phase values may 
be reliably estimated (in a probabilistic sense); the 
condition 'R large' is dictated by the opportunity of 
obtaining a valuable contribution to the Fourier 
synthesis once the reflection is phased. The distribu- 
tions P(z) are now recalculated for the new set of 
NLAR reflections. Curves corresponding to various 
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values of  SOG are shown in Figs. 4(a)-(d) for each 
test structure. 

Curves corresponding to S O G = 0  coincide with 
those displayed in Fig. 2 and are quoted again in Fig. 
4 for the benefit of  the reader. It is easily seen that: 
(a) the curves shift remarkably to the right when 
SOG increases; (b) the percentage of reflections with 
z < 3  progressively decreases for higher values of 
SOG and soon becomes negligible. Accordingly, the 
curves show very long right tails, suggesting a high 
percentage of reliably estimable phases. In order to 
check the above conclusions, we show in Table 6 the 
overall triplet statistics for the various test structures 
and for the SOG ;~ 0 values used in Fig. 4. 

The comparison of Table 6 with Table 5 immedi- 
ately suggests two things. 

(a) The overall reliability of the estimates 
increases with SOG. 

(b) The number of unreliable triplets progressively 
comes down for higher SOG values. For example, 
for E2, 29721 triplets have IAI < 0.2 when SOG = 
0.0; this number reduces to 4729 when SOG = 0.6 
and to zero when SOG = 1.2. A similar trend is 
found for all the other test structures. 

The above results suggest that almost all the 
reflections in the set N L A R  could reliably be esti- 
mated by a direct-phasing process. However, one 
issue remains open: the minimum value of R among 
the N L A R  reflections (say Rmin) decreases when 
SOG increases. Rmi n could then be so small that 
several reflections, once phased, would negligibly 
contribute to Fourier syntheses. In Table 7, the value 
o f  Rmi n is shown for each test structure and for each 
value of SOG. It is seen that Rmi n is sufficiently large 
to guarantee a useful contribution to Fourier syn- 
theses for each of the NLAR reflections. 

Concluding remarks 

We have examined the question: 'is a protein struc- 
ture solvable ab initio by direct methods when dif- 
fraction data from one isomorphous derivative are 
additionally available?' The application of the statis- 
tical solvability criterion to calculated (error-free) 
diffraction data suggests a positive answer, provided 
the set of  reflections to be actively used in the 
phasing process is characterized by relatively high 
values of IEI and IAI. Complementary tests on the 
overall reliability of  the triplet invariant estimates 
confirm what is suggested by the solvability criterion. 

The role of  reflections with high [A' I value was 
already perceived by Fortier, Weeks & Hauptman 
(1984) and by Karle (1983). This paper shows how 
crucial they are for the success of the phasing process 
and provides experimental details about their use. As 

Table 7. The value of Rmi.found for the various test 
structures among the NLAR reflections when some 

values of SOG are used 

Structure code NLAR 

APP 600 

CARP 800 

E2 450 

M-FABP 600 

SOG Rmi n 

0.0 1.09 
0.3 0.86 
0.5 0.60 
0.0 1.29 
0.3 1.07 
0.6 0.87 
0.0 1.81 
0.6 1.45 
1.2 0.85 
0.0 1.24 
0.3 1.04 
0.5 0.73 

a consequence, direct procedures designed for small 
molecules must be greatly modified in order for one 
to profit from the enormous amount of  information 
contained in the experimental data. 

The application of the method to real data is now 
mandatory. We anticipate here that a phasing pro- 
cedure has been devised that, applied to real experi- 
mental data, will allow the ab initio solution of all 
the four test protein structures used in this paper. 
This also confirms that high-resolution data, perfect 
isomorphism and negligible errors in measurements, 
even if desirable, are not so critical as generally 
believed. The phasing procedure and the experi- 
mental results will be described in paper II of  this 
series. 
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